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S U M M A R Y  
The present investigation considers various approximations for the problem of 
low-frequency elastic waves scattered by a single, small inclusion of constant elastic 
parameters. For the Rayleigh approximation containing both near- and far-field 
terms, the scattered amplitudes are investigated as a function of distance from the 
scatterer. Near-field terms are found to be dominant for distances up to two 
wavelengths, after which far-field solutions correctly describe the scattered field. At  
a distance of two wavelengths the relative error between the total and the far-field 
solution is about 15 per cent and decreases with increasing distance. Deriving 
solutions for the linear and quadratic Rayleigh-Born approximation, the relative 
error between the non-linear Rayleigh approximation and the linear and quadratic 
Rayleigh-Born approximation as a function of the scattering angle and the 
parameter perturbation is investigated. The relative error reveals a strong depen- 
dence on the scattering angle, while the addition of the quadratic term significantly 
improves the approximation for all scattering angles and parameter perturbations. 
An approximation for the error caused by linearization of the problem, based 
entirely on the perturbations of the parameters from the background medium, and 
its validity range are given. We also investigate the limit of the wave parameter for 
Rayleigh scattering and find higher values than previously assumed. By choosing 
relative errors of 5 per cent, 10 per cent and 20 per cent between the exact solution 
and the Rayleigh approximation, we find the upper limits for the parameter kp R to 
be 0.55, 0.7 and 9.9, respectively. 

Key words: elastic waves, Rayleigh-Born approximation, Rayleigh limit, Rayleigh 
scattering. 

1 INTRODUCTION 

Scattering of seismic waves is a fundamental process in the propagation of waves through the Earth. In recent years, numerous 
authors have turned to the theory of scattering to describe the complicated nature of seismograms that occur in various places, 
believed to be caused by inhomogeneities and sequences of layering within the structure of the Earth. Different scale lengths 
are the focus of attention, varying from mantle (Haddon & Cleary 1974; Doornbos 1976; Aki 1980), over crustal (Aki 1969; Wu 
1982; Sat0 1984), to regional and even local scales on the order of a few metres (Wu & Aki 1985; Herraiz & Espinosa 1987; 
Sams & Goldberg 1990). The common objective of these studies is to apply statistical approaches to determine the 
heterogeneity and the elastic parameters of the medium and to distinguish between different attenuation processes like intrinsic 
and scattering attenuation (Frankel & Clayton 1986; Frankel & Wennerberg 1987; Frankel 1991). Lately, the theory of 
localization, well established in quantum mechanics, solid-state physics and optics, was introduced to seismology (O’Doherty & 
Anstey 1971) to investigate scattering processes during propagation, and to determine possible limits in wave propagation 
(Richards & Menke 1983; White el af. 1987; White, Sheng & Nair 1990), although presently it is unclear whether the common 
approach of treating the Earth as a self-averaged random medium is valid (Shapiro & Zien 1993). 

As an alternative to statistical methods, deterministic approaches are a valuable tool for estimating local parameters by 
direct measurements. Such approaches require exact solutions for the scattering problem, but only a few exist for special cases. 
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Even though these cases are based o n  simplified geometries for the numerous shapes and sizes of inhomogeneities that are 
present in the Earth. they are difficult to implement. and hence solutions in terms of asymptotic approximations are developed. 
The assumptions used in the derivation of asymptotic solutions are usually expressed in the form of  strong inequalities where 
some combination of parameters is assumed to be much less or much larger than unity. For instance, for the case of Kayleigh 
scattering it is assumed that the parameter kR.  where k is the wavenumber of the incident wave and R is the radius o f  the 
scatterer, satisfies the condition k R  << 1. In the same manner, for the case of linearizing the inverse problem, we assume 'very 
small' relative deviations of elastic parameters and density. Such assumptions are convenient at the stage of mathematical 
development, but they present problems when attempting to determine the actual bounds on parameters during application of 
the results. Indeed, in realistic situations while operating with parameters having finite values, there is always a problem in 
justifying the validity of the approximation and determining the accuracy of the solution. What is the actual difference between 
the exact solution and the approximation that has been used? What are the upper limits of the parameters that can be used and 
still retain a specified level of accuracy in the solution? For the case of Rayleigh scattering of elastic waves. it appears that the 
limits of the approximation have not yet been quantified. An additional problem occurs when more than one assumption is 
involved in that they may be contradictory. This is a possibility for the case of Rayleigh scattering ( w - 0 )  in the far field 
( r -  x ) ,  where the parameter (wr/V,,) is assumed to be large. The intention of the present paper is to investigate the accuracy 
of several asymptotic solutions and quantify the limits under which these approximations are applicable. We present the error 
for the application of the asymptotic solutions as a function of various parameters and estimate under which conditions a given 
approximation provides an acceptable solution to the scattering problem. 

Recently, Korneev & Johnson (1993a,b) derived a solution for the scattering of an elastic P wave by a spherical inclusion 
of arbitrary contrast and developed asymptotic solutions for this problem. We investigate their low-frequency Rayleigh 
approximation which is valid for an arbitrary distance between the observation point and the inhomogeneity. and compare i t  to 
the solutions based on near-field and far-field approximations. We present the validity range for these limited approximations 
with respect to the distance of observation and discuss the relative contributions of the near-and far-field terms to the complete 
Rayleigh approximation. It should be noted here that, while these approximations were derived from the exact solution for a 
sphere, they depend only upon the volume of the scatterer and not upon its shape, and thus should be valid for the general 
class of inclusions with approximately equal dimensions. 

The Rayleigh approximation can be used to model the scattering process of low-frequency waves by an inhomogeneity. A 
common goal in seismology is to determine the elastic properties of this inhomogeneity by inversion techniques. However, 
since the dependence of the solution on the elastic parameters is non-linear, the inversion of the data often is preceded by a 
linearization of the problem. For this purpose, we derive a linearized solution in terms of the elastic parameters and assess the 
error as a function of their perturbations. Furthermore, the improvement of the approximation by accounting for higher-order 
terms is investigated. The determination of the relative error is based on the parameter values of the inhomogeniety and the 
background medium. Often these values are unavailable, particularly in the planning stage of an experiment when anticipated 
errors play an important role. Therefore, we develop an equation for the approximate error due to linearization of the problem 
that is based entirely on the estimated parameter perturbations from the background values. Finally, we investigate the upper 
limit for the Rayleigh approximation ( k R  << 1) as a function of parameter perturbation. 

2 RAYLEIGH APPROXIMATION FOR A N  ELASTIC S P H E R E  OF A R B I T R A R Y  CONTRAST 

A derivation of the exact scattering solution for a homogeneous elastic sphere was given by Korneev & Johnson (1993a,b). In 
their second paper they derive a low-frequency approximation for a spherical inclusion. However, because of its low-frequency 
range, this approximation simultaneously provides a solution for a wide range of arbitrarily-shaped 3-D structures. For reasons 
of clarity, we restate the exact solution again and follow their derivation of the low-frequency approximation. 

The investigated scattering problem consists of an elastic inclusion defined by the parameters A , ,  p ,  and p ,  (in the 
following, the index v = 1 denotes the medium of the inclusion) embedded in a homogeneous medium with constant 
parameters A,, p, and p2 (in the following, the index v = 2 refers to the background medium). The geometry for this situation 
is shown in Fig. 1. A joint Cartesian (x, y ,  z )  and spherical ( r ,  8, 4) coordinate system with its origin at the centre of the 
inclusion is considered. 

Throughout the paper, we will use an incident plane P wave of the form 

which is travelling in the background medium in a positive direction along the z axis. U,, denotes the Fourier transform of the 
incident wave. However, a t  the end of this section, we will provide a factor that accounts for an incident spherical wave 
generated by a point pressure source. 

In the frequency domain, the total solution to the scattering problem can be written as a sum of the incident and the 
scattered fields: 
I 

U = Ue"'' = (U,, + U,, + U,)erw' (2) 
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Background 

v = 2  

9 Incident Plane Wave 

F i p e  1. Geometry of the problem. The properties of the inhomogeneity and the background are denoted by v = 1 and v = 2, respectively. A 
plane wave is incident in the positive z direction, while the observation of the scattered wave is a tunction of 6 and r. 

where U, and LJY denote the scattered P and S waves, respectively. 
For the case of a plane P wave impinging upon a sphere, the total scattered fields can be represented as 

u,, = up + u, 

where h k ( x )  are spherical Hankel functions of the second kind and P, are the Legendre functions. The coefficients a, and b, 
depend upon the properties of the sphere as well as the background medium. They also depend on the wavenumber of the 
scattered fields. For a detailed discussion of the derivation we refer to Korneev & Johnson (1993a). 

For the development of the low-frequency approximation, we only use those terms of the exact solution that are of lowest 
degree in frequency. These terms (w3) are of third order and appear only in the first three coefficients (1 = 0, 1 ,2)  of the exact 
solution. 

with 
7 

[ =  k,R, q = k,R 
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Thus. we obtain a low-frequency approximation with no restrictions upon the elastic parameters as: 

u,, = u, + u, 

u/, = (U/A6))3 + (up(e)),6 

with 

The new functions are defined as follows 

where V is the volume of the inclusion, and 

1 
W{?(Z/,) = 1 - - 

Z/? 

with 

o r  o r  
Z = k  r = - ,  Z r = k , r = - .  

KZ P P  
VPZ 

The above approximation has used the lowest degree in frequency only, and is based on the assumption that 

W R  
k,,,R = - << 1, 

Vmin 

(ht.) 

where Vmin denotes the minimum velocity and k,,, represents the corresponding wavenumber. This result, generally known as 
the Rayleigh approximation, does not depend upon the shape of the inclusion but only upon its volume. 

The W functions in eq. (8) contain the distance dependence of the observation point from the centre of the sphere and are 
valid for all values of r 2 R. Thus, the expression in eq. (6) is a complete solution containing near- and far-field contributions. 
From this solution it is evident that the P wave of the scattered field contains a contribution in the 6 direction, while the S wave 
contains a factor in the i direction. Thus, the P and S waves are not decoupled and their polarization is complicated in the near 
field. However, as the distance of observation increases, the relative contributions of the W functions change in such a way that 
the solution takes on the form of the far-field approximation. 

To obtain the far-field approximation, we have to satisfy the following conditions for the W functions in their limits: 
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this limit, the scattered field can be divided into an i and a 6 component, both revealing a l / r  dependence for scattered 
aves in the far field: 

me natural polarization in the i- and 6-direction for the P and S waves, respectively, is evident. 

easily be addressed by putting the solution (6) in the form 
The effect on the amplitude of the scattered field of the ratio between R and the wavelength A,, of the incident P wave can 

(using Z,, = yZ, )  where the function F(Z,, 0 )  also depends upon the parameter perturbations, but does not depend on the 
radius R of the inclusion. Thus, when R -+ A,, the amplitudes increase until a maximum is reached for the Rayleigh limit 

In the near field, where Z,, << 1.0 and Z,  << 1.0 the P and S components of the scattered field may be combined to form an 
asymptotic solution depending on both i and 6,  by expanding eClkpr and e-Iksr in eq. (7) and keeping only the lowest degree in 

(kpR)I,,. 

ZP. 

z; cos I 9  + i (  1 - $)(: - 1) 5 (3 COS2 @ - 1) i 1 $ ( A l  - h2)  + p l  - p2 

$($A1 + P I )  + P2 

With the definitions for Z,, and Z, in eq. (9), it becomes apparent that the amplitude for the near-field approximation contains 
components which are proportional to l / r  and 1/r2. The sum of the i and 8 components indicates the complicated polarization, 
as the P and S wave are not decoupled yet. 

So far, we have treated the scattering problem considering an incident plane P wave with a source located at infinity. 
However, the problem can as well be addressed for the case of an inhomogeneity in the near or far field of a point pressure 
source exciting a spherical P wave 

where r, is the distance between the point source and the centre of the inclusion. The consideration of a spherical incident wave 
introduces additional functions for the distance dependence of the scattered field of the form 

Zpo - i c, = 4 
ZP”  

z;,, - 3izp ,  - 3 

z;o c2 = 4 ,  

with 

The C, have to be multiplied onto those W, functions in eq. (8) that have the same degree in 1 to provide the correct 
distance-dependent functions for the case of a single-point pressure source at an arbitrary distance from the inhomogeneity. 
However, in this study we address the problem of an incident plane P wave only. This restriction permits all of the 
displacement fields to be represented in terms of unitless values for the purpose of simplicity in presenting numerical results. 
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3 COMPARISON BETWEEN LOW-FREQUENCY TOTAL SOLUTION A N D  THE 
APPROXIMATIONS IN THE N E A R  A N D  FAR FIELDS 

For the comparison of the various approximations listed above, we compute the scattered amplitude for a given spherical 
inclusion with radius R along a profile of observation extending from r = R (near field) to r >> R (far field). The profiles are 
computed for various scattering angles between 8 = 0" and 8 = 180" (symmetry exists along the 0"-180" axis of incidence) to  
present a qualitative view of the angular dependence. The results are computed for an inhomogeneity with a 10 per cent 
increase in y,  and V, velocity as well as density with respect to the background. The structure (eq. 14) of the scattered field 
makes it possible to  investigate the unitless function F independently of the radius R of the inclusion, thus producing results 
with more universal application. In Fig. 2(a,b,c) absolute values of the r-component of F(Z,,, 8 )  are plotted as functions of 
Z,, = k,,r of the incident wave for three different angles 8 = Oo(a), 90"(b), 180"(c). In order to compare results of a different 
geometry with these curves, the minimum value of the parameter k ,R has to be determined for the new geometry. and 
subsequently the normalized amplitudes to  the right of the new limit on the abscissa will be comparable after multiplication by 
the corresponding value of (k,R)'. This minimum should be equal to or  less than the Rayleigh limit (k,>R),,nl, which depends 
upon the parameter perturbations. A detailed discussion on the validity range of the Rayleigh limit is presented in Section 5. 

For each value of 8 in Fig. 2(a,b,c) three curves are shown, representing the f component of the total field (solid line, eq. 
6 ) ,  the near field (dashed line, eq. 15), and the far field (dotted line, eq. 13) of the Rayleigh approximation. The graphs are 
plotted using a logarithmic scale for both axes. Thus, the far-field solution with a distance dependence of l / r  appears as a 
straight line with a slope of -1, whereas the near-field solution revealing both a l / r  and l / r 2  dependence produces two 
constant slopes. In the very near field the l / r z  term is dominant, creating a slope of -2, while for larger distances the 
dominance of the I / r  term is apparent by a change in slope to  -1. The transition between these two slopes is defined by 
contributions from both factors. However, the application of the approximations at various distances of observation requires a 
careful investigation of their validity range. All curves are computed between k,,r = lo-' and k,,r = lo', although only the total 
field is valid for the whole range, as we found from comparison with the exact solution for the sphere. The near-field solution is 
applicable in the vicinity of the inhomogeneity, whereas the far field yields correct values at a greater distance from the 
inhomogeneity only. (This is supported by Fig. 2a.) The total field solution coincides very well with the near-field solution for 
small values of k,,r, whereas the discrepancy becomes larger for greater distances of observation. Similarly, it differs from the 
far-field solution in the near field, while asymptotically, the two solutions merge in the far field. The oscillatory nature of the 
total solution in the i and the 6 components is based on the near-field contribution of the S wave (k,, vector in the f component) 
and P wave (k,, vector in the 8 component), respectively. The interference between both components is present in the near field 
only and decreases in the far field. 

The most intriguing result is the large-amplitude difference between the total and the far-field solution of magnitude -300 
for the very near field k,r = lop2. This difference decays continuously until good agreement is reached at a distance of 
approximately k,,r = 4n(r = 2A). Between k,,r = and k,,r = 4n/10 ( r  = 0.2A), the near field provides a better approxima- 
tion than the far-field solution. In between these distances (0.2A < r < 2A), a range that we refer to as the mid-field, both 
solutions present an alternating fit to  the total field because of its oscillatory behaviour. Fig. 2(a) presents pure forward 
scattering (8 = 0"), while Figs 2(b) and (c) show the results for a scattering angle of 8 = 90" and 8 = 180" (backscattering), 
respectively. It is evident that the main features described above still apply in these cases, although the amplitude difference 
between total and far fields for r = R decreases by one order of magnitude for 8 = 90", before it regains the initial value for 
8 = 180". For the scattering angle of 8 = 90", a drop in amplitude of the near-field solution below the values of the far-field 
solution is noticeable yet without bearing as the solution is not valid in this range, 

The 6 components of the same fields are presented in Figs 3(a)-(c). Because the amplitude of the 6 component is zero for 
8 = 0" and 8 = 180", we show the results for 8 = 45", 8 = 90" and 8 = 135". Again, the total field coincides well with the near- 
and the far-field solutions in the near and far-field ranges, respectively. However, it is evident that the amplitude difference in 
the near field decreases t o  a factor of 15 for 8 = 45" and 8 = 135", and shows no significant difference for 8 = 90", while the 
amplitudes are slightly larger for the far-field solution. The mid-field region is characterized by a misfit for both near-field and 
far-field solutions, although the total field solution reveals less oscillations. 

The oscillatory nature of the total field solution causes similar oscillations of the relative error between the total field and 
the far- o r  near-field solutions. Because of this it is useful to  define the mean value of the error as the smooth trend through the 
residuals, which minimizes the effect of the rapidly fluctuating values. For the relative error in the i component, we found such 
a mean value to  be 15 per cent a t  a distance of 2A. However, the oscillations around this value can be as high as 35 per cent and 
as low as 2 per cent. A t  a distance of 10A, for example, the mean error has decreased to  5 per cent with variations between 8 
per cent and 2 per cent. The  values for the 8 component reveal a smaller error over the entire distance of observation. At  2A, 
the mean value of the relative error is 2 per cent, with fluctuations between 4 per cent and 0 per cent, and this decreases 
gradually with increasing distance of observation. 

The comparison between the total- and far-field solutions indicates the advantage of near-field components in the total-field 
solution. The high amplitudes of the scattered waves in the near-field suggest an improvement for the determination of the 
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Figure 2. Normalized modulus of amplitude factor F(Z,, 6 )  (eq. 14). Radial component of the low-frequency scattered fields for a high velocity 
and high density inclusion of +10 per cent. 

elastic properties, under the assumption that corrections for the incident field can be applied. Thus the deployment of recording 
instrumentation in the vicinity of inhomogeneities together with the observation of the incident field could improve the results 
for inverting scattered energy. In addition the limit for the validity of the far-field solution indicates that for an observation 
distance less than 2A, this solution produces wrong results, while it can be applied to distances greater than 2A. 

The presented results are computed for an inhomogeneity with a 10 per cent increase in Vp and V ,  velocities as well as in 
its density with respect to the background. Because we compute the modulus of the amplitudes, investigations of a negative 
perturbation produce the same shape and relations of the amplitude curves as for an equal-magnitude positive perturbation. To 
determine the sign of the perturbation, the separate use of real and imaginary part is more appropriate. However, the 
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Figure 3. Normalized modulus of amplitude factor F(Z,, 0) (eq. 14). Azimuthal component of the low-frequency scattered fields for a 
high-velocity and high-density inclusion of + 10 per cent. 

investigation of scattering diagrams as a function of combinations of parameter perturbations is beyond the purpose of this 
paper, and we refer to works by Sat0 (1984), Wu & Aki (1985), and Tarantola (1986). 

4 EXTENSION A N D  E V A L U A T I O N  OF T H E  RAYLEIGH-BORN APPROXIMATION 

Thus far, we treated scattering solutions for arbitrary contrast in the elastic parameters only. In eq. (4) the coefficients are 
non-linear in terms of the elastic parameters A and p. This can be problematic, if a solution for the inversion of the scattering 



problem in terms 0:‘ the elastic parameter5 is sought. A common practice, therefore, is to solve the linearized inversion 
problem. This iinearization is often referred to as the Born approximation. The actual conditions for the validity of the Born 
approximation include the zize of the inclusion, the perturbation of its elastic parameters with respect to the background. and 
the phase shift between different scattered phases (Hudson 8( Heritage 1981). In the Rayleigh scattering regime, the 

is large compared to the scatterer size. and. tor the case of a weak inhomogeneitv. the consideration of a possible 
phase shift can be neglected. Thus. for this case. the Born approximation is valid, and is often referred t o  as the Rayleigh-Born 
approximation. To linearize the problem. the coefficients are expressed in a converging binomial series expansion assuming the 
perturbations in the parameters are smaller than the background values. The approximate solution is found by keeping the 
linear term of the series expansion while disregarding higher orders. This step is valid only for small perturbations: 

~ (18) 
1 6 ~ 1  P I  - A2i  << ,, __- PPI IPI-P21<<l, _ _  16Pl - (PI - P21<< 1, -- 
A2 A, P2 P2 P2 P.. 

Expanding the coefficients in eq. (4) in terms of the elastic parameters and keeping the tirst terms only yields a linearized 
solution to the scattering problem which has the form 

“ ‘ I ) =  u‘” + U!” 
JC P 

With 

1 “ ! I )  = 4 2 %  w;,(z,) cos 8 + 2 - yWl,(Z,)(3 COS2 8 - 1) i 8P 

P 2  P2 

8P W’,,(Z,) sin 0 + - YW:~(Z,) sin 2 8  
P’ 

In order to evaluate the error made by applying the linearized solution, we go a step further and use the linear and the 
quadratic term of the expansion for the coefficients in eq. (4) and derive a more exact approximation to the non-linear solution 
which we will refer to as the quadratic approximation. This gives 

where 

Eqs (6), (19) and (20) are the basis for the evaluation of the error in approximating the non-linear solution. The 
evaluations are undertaken in the far field of the inhomogeneity, allowing the application of the commonly used far-field 
approximation. First, we evaluate the error in terms of the scattering angle to investigate the possible effects of the scattering 
direction. Therefore. we determine the amplitude of the scattered field for all angles between 0” and 360” using the three 
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Born-Approx (linear. r-corn.) 
0 Born-Approx. (quadratic. r-corn ) 

~ Nonlinear Solution (@-corn I 

P->P scattered 

0 45 90 135 180 225 270 31 5 360 

Scattering Angle 
Figure 4. Amplitude5 of sc'ittered fields a5 a function of scattering anple. 

equations mentioned above. The result is given in Fig. 4. For both components. the amplitude values of the linear 
approximation exceed the non-linear solution. while the quadratic approximation underestimates it. This is caused by the 
alternating sign in the series expansion with increasing order. 

A problem for the estimation of the relative error between the approximations and the non-linear solution for every 
scattering angle arises from the vanishing amplitude values at 6' = 0". 75", 1x0". 2XY,  360". These singularities produce 
unphysically high values for the relative error. Therefore. we will relate the error in the r̂ and 6 component to  the mean square 
amplitude 

Here, c = r,  8 denotes the components of the scattered wave. Hence the relative error becomes 

where F = 1,2 represents the linear and quadratic Rayleigh-Born approximation, while Ul:'(O) and U,<(6') denote the scattered 
field of eqs (19), (20) and (6 ) ,  respectively. Thus, we normalize the error for each component by the average scattered 
amplitude of the same component. Fig. 5 reveals the results. For the i: component, a relatively smooth distribution of the error 
can be seen. The scattering problem is symmetric along the 0"-180" axis. One  evident feature is the decrease of the error 
between the forward and the 90" scattering direction by a factor of -3. Further, it can be seen that for this particular example 
of a velocity and density perturbation of +10 per cent, the introduction of the quadratic term in the series expansion reduces 
the error compared to  the linear approximation by a factor of more than 5. The same improvement is found for the 6 
component. Distinct lobes at angles of approximately 45" to  both sides of the axis of wave incidence are visible. For both 
components no particular difference between forward and backscattering is evident. This representation of the error reveals the 
strong dependence on the scattering angle and provides some insight into the improvement to be gained by taking into account 
the quadratic term in the series expansion. 

Next, in order to  estimate the error as a function of perturbation in the elastic parameters, we integrate the difference 
between the Rayleigh-Born and the non-linear approximations over all scattering angles 8, 
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relate it to  the non-linear approximate solution integrated over all scattering angle, 8 

1 "  2 JT, IU,< 12 sin 0 (10 (24) 

his allows us to compare the total average scattered amplitude for the non-linear and the approximate solutions and 
bnvestigate i t  as  a function ot parameter perturbation. Hence the error become\ 
! 

where the notation is equivalent to  eqs (21) and (22). The result is shown in Fig. 6 for positive and negative parameter 
perturbations in A ,  /I and p. The quadratic approximation reveals a smaller error compared to the linear approximation over 
the entire range for both cases of a positive and negative perturbation. However, the best improvement is achieved for 
perturbations less than 20 per cent. While -100 per cent constitutes a lower limit for the error. i t  was found that above a 
perturbation of +200 per cent, the error for the linear approximation becomes less than for the quadratic approximation 
(although physically this is an acceptable statement, mathematically the extension beyond + 100 per cent is incorrect. since the 
assumption for the series expansion of the elastic parameters (eq. 18) was that the absolute value of the relative parameter 
perturbation remains smaller than one). 

It should be noted that the solution in eq. (6) depends linearly on the perturbation in density. Therefore. the scattering 
problem for an inhomogeneity with a change in density only can be exactly described by the linear approximation in eq. ( 1 Y ). 

The difference in the errors between the linear and quadratic Rayleigh-Born approximations can be used in the inversion 
of a linearized problem. After the first iteration of the inversion, the quadratic Rayleigh-Born approximation is computed and 
the difference from the linear approximation can be applied t o  adjust the first preliminary result. The corrected result will bc 
the input for the second iteration. This scheme, which should ensure a faster converging solution to  the problem of inverting 
for the parameters of a scatterer, is the topic of current investigation. 

In the following, we present a quantitative estimation of the relative error of the linear approximation based purely on the 
relative perturbations in the elastic parameters from the background values. This provides an important estimate for the error 
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Figure 6. Relative average error of the linear and quadratic Rayleigh-Born approximation5 as a function 0 1  pxametcr p c i  tur.h'itiori 

due to linearization of an experiment where no absolute values are available. except for assumed perturh:itiori. o!' ;!it 
inhomogeneity from the background. The error is based on the equation (25): 

This has the advantage that only perturbation terms of the cla5tic pardmeter5 remain in the resulting equatiiw A ~ ~ u m i n g  t'quLiI 

perturbations for 6h/h2 and 6 p / p z .  

we find 

Thus for the case of similar perturbations in the density and the elastic parameters (n = 1) this yields C / 3 ,  whereas J I O  densil! 
contrast ( n  = 0) produces an error of C/2. The dependence of this error on the perturbation in elastic parameters i h  shoun in 
Fig. 6 (dashed line). A good agreement between the linear approximation and the estimated error is found up to a paramt.:t.r 
perturbation of 20 per cent. The derived equation provides a means to estimate the minimum error in thc total avers@ 
scattered amplitude due to the linearization of the problem. It should be mentioned that for the casc of an inversion, additional 
errors. associated with ill conditioning of the experiment and poor signal-to-noise ratios, for example, will increase t h e  total 
error for the estimated parameters of the inclusion. 

5 INVESTIGATION A N D  E V A L U A T I O N  OF T H E  RAYLEIGH LIMIT 

The Rayleigh approximation generally is based on the assumption that the parameter k,,R is small compared to 1. 

although the actual magnitude of the limit is not known. The value of k,,R depends not only on the wavelength, the velocity ot  
the background, and the dimensions of  the scatterer, but also on the perturbations in the elastic parameters from the 
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background values. Therefore, we investigate the Rayleigh limit of k,,R as a function of perturbation in the elastic parameters. 
For a given perturbation. we compute, for a given value o f  k,,R, the average square amplitude over all scattering angles for the 
exact solution for the sphere (eq. 3) and for the Rayleigh approximation in the far field (eq. 13). The two solutions tend to 
deviate with increasing k,,R for a fixed perturbation value. We determine the Rayleigh limit from the value of k,,R that is 
reached for a predefined maximum deviarion of these two solutions. The result is shown in Fig. 7. We set the niaxitnum 
deviation between the two  solutions to  5 per cent, 10  per cent and 20 per cent. The parameter perturbation was chosen to vary, 
when possible, -100 per cent and +300 per cent. Three different relations between the perturbations of elastic moduli and 
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Figure 7. Rayleigh limit for the parameter k,,R as a function of parameter perturbation. The three curves correspond to three investigated 
error limits of 5 per cent, 10 per cent and 20 per cent. Also plotted are the velocity and density ratios associated with the chosen relation 
between the elastic parameters. 
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density were selected. In addition. the velocity and densit! ratios are indicated t o  demonstrate the ellcct 0 1  1 1 1 ~ .  p 1  i ~ : i c~e l  

perturbations. In the presented examples. we keep the sign and increase in perturbation equal lo r  A and p ,  n h i l c  iI!c . ! \ \ , I  

change in p varies in sign and magnitude. Fig. 7(a) denotes the situation of a 50 per cent reduced densit! iiicrcii\c i n  I C I ; I [ ! O I I  I:, 

the other parameters. The curves for the Rayleigh limit show a parallel trend for the different error-s. L t i t l i  ;I  \ t l i < l < l i l i  tLii lL.iL,l 

between -75 per cent and + 100 per cent. For higher perturbations ii slow decrease in t h e  K;ikleigh l t i i i i i  I \  [II>\~,I\ ,!;+,. 

However, towards -100 per cent the limit drops steeply. indicating a small value for the Rayleigh limit 0 1  <I \ci-! / o ~ ~ \ ~ l  
inclusion. This result has a natural explanation in the tact that k,>H inside the inclusion hccmies large :IIILI \ i o l L i i ~ , \  !!ic l<<i\ 

limit condition. Changing the relation between the parameter perturbations will affect the 5h;ipc 0 1  thc C U J \ L . \  ,I\ \L .C ' :~  !ii ' hc  
next examples. In Fig. 7(b). we kept the density at a constant level that produced ;I milximuin i n  the l<ii!lci~h I ini i i  I t 1 1  

perturbations between -25 per cent and -50 per cent. This maximum ih caused by the mutual intlucncc of ,111 iin&,rc\iii 

of the behaviour of the Rayleigh solution for low-velocity obstacles in the Mie diffraction region (!,,,/< - 1 j <ind I cL'i1:i 1 1  
overestimation of the trend of the solution at high frequencies. At some point these two proccsxs compcnwtc ~ ~ ' ~ c l i  o i l i c i  

Numerical examples illustrating this phenomenon and a discussion may be found in Kornecv & Johnson ( 19L).;t3\, 1 . 0 1  J i!;i!ti 

relation between the elastic parameters (Fig. 7c). the maximum is reached for a lower negative perturbation v,ith .I J I I !~ !  L ' : l i  

amplitude. In both cases the trend of the curves for positive perturbations remains the same. indicating .I coiii!titioLi4\ 

increasing deviation between the Rayleigh approximation and the exact solution. 
The results clearly suggest that the Rayleigh limit has a more flexible interpretation than indicated t,! <o:ldiiit\!i I ? \!I .  

Depending on the acceptable error between the Raylcigh approximation and the exact solution. we tind values lor  ilic K ~ ~ i t , ! < h  
limit between 0.3 and 0.8 for a positive increase in parameter perturbation, and limits o f  up t o  0.9 for ncig;iti\i, p c i ~ i i i l ~ . ! i i ~ ~ i i ~ .  

The constant shift between the graphs for the three errors over the entire range of perturbation indicate\ .I rclL!tioii !vi\~,.,~!) 

the error and the Rayleigh limit (kpR)lin, which can be found from the equation 

where Ae is the allowed error, and d a constant, detined by the perturbation in the elastic parameters Iron1 the bacI,groiinci. 1 1 1  

order to  approximate the magnitude of d, we go back to the exact solution for the sphere (eq. 3). and deri\.e ii lon-trcqiic~ric\ 
approximation based on frequency terms up to fifth order ( w ' ) ,  thus using the first four coeficients (i = 0, I, 2 ,  3 )  of the C, \ ; I<Y 

solution. By comparing the parameter k,,R of this improved approximation. and the Rayleigh ;ipprouimation based on ihii cI- 
order terms (eq. 6), we are able to evaluate d. Using the notation and assumptions from eq. (27) ue get in [he \iciiiit? ot ' j C , i o  

perturbation 

rl -- o,4(7n' + ~n + 21''~ 
6.4n2 + 1.6 ' 

Thus, for the low-frequency Rayleigh approximation (eq. 6 ) .  eq. (30) provides a means to estimiite ihc crrur  
limit with a minimum knowledge of the parameters involved. 

t h c  K.i!l~.!s!: 

6 CONCLUSIONS 

The intention of this paper was to  investigate the accuracy of several asymptotic solutions to the problem of l w - l i - c q u L ~ i i c !  
elastic-wave scattering and to provide means to evaluate scattering experiments in their planning stage. The results \\ cic kept 
in universal format, allowing for a convenient application to various scattering problems in seismology. bar!  ing trom I C K J I  O L  c r  

crustal-to-mantle scale lengths. 
We investigated a low-frequency total-field solution to the problem of elastic Rayleigh scattering, u hich pi-ociuccd. \ + i t  h i n  

the Rayleigh limits, exact results over the entire distance range of observation, and compared it  t o  pure near- m c I  Iiir-tiL~Icl 

solutions. The generally used far-field solution cannot be applied to the case of an inhomogeneity situated within a distance It's\ 

than two wavelengths from the point of observation. Within this distance, the near-field terms dominate the amplitude of the 
scattered wave, and P and S waves cannot be separated. This case, dependent on the wavelength oI the incident W \ C .  ni 'i\  

arise in cross-hole experiments when the inhomogeneity is located close to the observation well and in experiments where the 

scattering object is sited in the uppermost crust beneath the detecting system. The inversion for the perturhation in the cl:i\tiz 
parameters will fail if a Green function is applied that does not contain the appropriate near-field ternis. However. at ;I disiiiiicc, 
farther than 2 A ,  the near-field terms have decayed sufficiently and the far-field solution can be applied. At this distance, thc  

mean value of the relative error between total- and far-field solutions is 15 per cent and 2 per cent for the i and 6 component\. 
respectively. The generalized amplitude-distance relations (Figs 2, 3) can be used t o  determine the scattered amplitudt,s lor 
any case of low-frequency elastic-wave scattering as long as the results are normalized by the actual expel-iment piiriinietcr X , , K  

The availability of an exact solution enabled us to compute errors for the application of the Kayleigh approsirnation iind 
associated solutions and investigate them as a function o f  various parameters. The representation of the non-linear Ra!lcigti 
approximation as a linear and quadratic Rayleigh-Born approximation revealed, for the relative error. ii strung dependence on 
the scattering angle for both the i and 6 components. For ;I fixed-paranietcr perturbation, i t  wah found that the i component 



a larger error for forward scattering than for scattering perpendicular to the direction of mcidence. Four distinct lobes 
45" off the axis of wave incidence developed for the error in the 6 component. In both cases the application o f  the 

c Rayleigh-Born approximation reduced this error by a factor of 5 .  These results suggest that if the orientation of 
source. scatterer and receiver are known. then it  is possible to estimate the accuracy of the approximation due to 

tion of the problem. 
increase in magnitude of parameter perturbation caused increasing magnitudes in the relative error for linear and 

c approximations, although the exact amount depends on the sign of the perturbation. For a positive ipcrease of 100 
the maximum error amounts to Y per cent and 17 per cent for the quadratic and linear Rayleigh-Born 

ations. respectively. A decrease in elastic parameters caused a larger error. For the case of a void ( -  100 per cent). the 
was determined to be 19 per cent for the quadratic and 37 per cent for the linear approximation. As a consequence. a 
ible interpretation o f  the magnitude of parameter perturbation is justified. As could be seen, the inequality (eq. 18) 

ents a very conservative limit. whereas a linearization in the case of perturbations below .-20 per cent should produce 
e results. In the case of inversion for the parameter perturbations. the difference between the linear and quadratic 
gh-Born approximations can be applied to correct the result after every iteration in the inversion procedure. A faster 

order to  facilitate the estimation of the relative error due to linearization of the problem. we derived an approximation 
error. entirely based on the deviations in the elastic parameters from the background. This enables one to estimate the 

For  prior to an experiment based on a minimum of information and may help to  improve the planning of the investigations. 
We found our equation to provide an adequate representation of the relative error in the linear Rayleigh-Born approximation 
or  a parameter perturbation of up to +20 per cent. 

One of the assumptions of the Rayleigh approximation is that the value of k,,R is small compared to 1. However, thus far 
10 exact evaluation of this limit has been performed. We investigated the Rayleigh limit for k,R as a function of perturbation 
n the elastic parameters. Allowing for various errors between the exact solution and Rayleigh approximation, we found 
urprisingly high values for the limit over almost the entire range of perturbation between -100 per cent and +300 per cent. 
daximum values of more than 0.9 were reached. A relation between the Rayleigh limit and the accepted error as a function of 
iarameter perturbation was found. The high values for the Rayleigh limit allow the validity of Rayleigh scattering (eq. 29) to  
ie extended further toward the range of Mie scattering (R+A) ,  and thus open a broader range for the application of 
lastic-wave Rayleigh scattering. 

more stable algorithm should be the result. 
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